Part Number Hot Search : 
160CA 12N50E BUZ900 FAMDL4J LB1651 ENA1771B FRS1M A100G
Product Description
Full Text Search
 

To Download EM6124 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 R
EM MICROELECTRONIC - MARIN SA
EM6124
Digitally Programmable 8 to 25 Multiplex LCD Controller & Driver
Description The EM6124 is a low power CMOS LCD controller and driver. The 8, 16, 20 and 24 way multiplex are digitally programmable by the command byte. One additional line can be added for Icons or Inverted Video by programming 9, 17, 21 or 25 way multiplex. The display refresh is handled on chip by an internal RC oscillator via one selectable 25 x 116 RAM which holds the LCD content driven by the driver. LCD pixels (or segments) are addressed on a one to one basis with the 25 x 116 bit RAM (a set bit corresponds to an activated LCD pixel). The EM6124 has very low dynamic current consumption, typically 70 A at VDD = 2 V, VLCD = 7 V making it particularly attractive for portable and battery powered products. The wide operating range on supply voltages and temperature offers much application flexibility. The LCD voltage, bias generation and frame frequency are generated on chip. The clock signal can be used to shift and to latch the data into the RAM. Applications * Mobile phones (GSM, DECT) * Smart cards * Automotive displays * Portable, battery operated products * Balances and scales, utility meters Features * Slim IC for chip-on-board, with gold bumps for Chip-OnGlass and Chip-On-Flex technologies * Very simple 2-wire interface * Digitally programmable multiplex rates: 8 x 113, 9 x 112, 16 x 105, 17 x 104, 20 x 101, 21 x 100, 24 x 97, 25 x 96 * No lost pads while row driver from 8 up to 25 * On chip: Voltage multiplier, VLCD up to 7 V (3 to 6 V at 25 C), 64 VLCD digitally programming steps, 4 VLCD temperature compensation factors, bias generation, VON / VOFF generation, frame frequency, display refresh RAM * No busy state * High noise immunity in inputs * No external components needed, except a VLCD capacitor * Digitally reversing row data * Digitally reversing column data * Inverting data function * Blank function * Set function * Checker and Inverted Checker functions * Sleep modes * Low LCD operating current consumption * Wide VDD voltage supply range, 2 to 5 V * Wide temperature range: -40 to + 85 C * Direct display of RAM data through the display data RAM
(To cascade ICs, please see Fig. 19 and contact EM Microelectronic-Marin S.A.)
Typical Operating Configuration
Pad Assignment Slim Form Chip
Fig. 1
(To contact Power Supplies, please see Fig. 20) Fig. 2 Copyright (c) 2004, EM Microelectronic-Marin SA 1 www.emmicroelectronic.com
R
EM6124
Absolute Maximum Ratings Parameter Symbol Supply voltage range VDD1,2 Supply high voltage range VHV Internal generated VLCD VLCD Voltage at DI, DO, CLK, FR, VLOGIC RES Voltage at S1 to S121 Storage temperature range Electrostatic discharge max. to MIL-STD-883C method 3015.7 with ref. to VSS Maximum soldering conditions VDISP TSTO VSmax TSmax Conditions -0.3V to 6V -0.3V to 6V 7V -0.3V to VDD+0.3V -0.3V to VLCD+0.3V -65 to +150C 1000V 250C x 10s Handling Procedures This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. Unused inputs must always be tied to a defined logic voltage level. Operating Conditions Parameter Symbol Min Operating TA -40 Temperature Logic supply voltage VDD1,2 2 Supply high voltage VHV 2.5 Typ Max Unit +85 C 5.5 5.5 V V
3 3
Stresses above these listed maximum ratings may cause permanent damages to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction. Electrical Characteristics VDD1 = VDD2 = 3V, VHV = 2.5 to 5V and TA = -40 to +85C, unless otherwise specified Parameter Symbol Test Conditions Min. Standby supply current IDD See note 1 Standby supply current IHV See note 1, VLCD step 30 (hexa) Dynamic supply current IDD See note 2 Standby supply current IHV See note 3, VLCD Step 00 (hexa) Sleep mode supply current IDD Sleep mode supply current IHV Control Signals DI, CLK, FR, RES1, RES2 Input leakage IIN VDD1,2 or VSS -1 Input capacitance CIN at TA = 25C Low level input voltage VIL 0 High level input voltage VIH 0.7 VDD1,2 DC output component VDC See table 4 VLCD (internally generated) VLCD See note 4 VLCD VLCD See note 5 VLCDstep Note 1: Note 2: Note 3: Note 4: Note 5:
Typ. 16 65 57 35 0.1 0.1
Max. 22 170 75 140
Units A A A A A A
1 8 0.3 VDD1,2 VDD1,2 100
30 6.15 3.15-7.09 62.5
A pF V V mV V mV
Table 3
All outputs open, DI and CLK at VSS, mux ratio = 24, checker pattern. All outputs open, DI at VSS, fCLK = 1 MHz, mux ratio = 24, checker pattern. DI and CLK at VSS, checker pattern, mux ratio = 8. Initialization bits 18 to 23 = 110000 and initialization bits 10, 11 = 00; laser trimming on request. Initialization bits 18 to 23 = 000000/111111.
DC Output Component Output Row Driver Column Driver
Frame n n+1 n n+1
Logic Data 0L 0L 0L 0L

Measured* VLCD - V2 V4 - VSS VLCD - V2 V3 - VSS
Guaranteed V1 = 0.83 x VLCD 100 mV V2 = 0.66 x VLCD 100 mV V3 = 0.34 x VLCD 100 mV V4 = 0.17 x VLCD 100 mV
Table 4
*Vx =
Vx (load = +1A) + Vx (load = -1A) 2
, mux 24 or 25 programmed, VLCD = 6V, TA = 25C
Test is performed for multiplex rate = 25. All multiplex rate 25 are guaranteed by design. If multiplex rate 25, test will be performed on request.
Copyright (c) 2004, EM Microelectronic-Marin SA
2
www.emmicroelectronic.com
R
EM6124
Timing Characteristics VDD1 = VDD2 = 2 to 3V, VHV = 2.5 to 5V and TA = -40 to +85C Parameter Symbol Test Conditions Clock high pulse width tCH Clock low pulse width tCL Clock period tper Reset1 pulse width Reset2 pulse width Clock and FR rise time Clock and RF fall time Data input setup time Data input hold time FR (internal frame frequency) t RES1 t RES2 tCR tCF tDS tDH fFR (note 1) Min. 70 110 550 10 130 200 200 20 260 75 Typ. Max. Units ns ns ns s ns ns ns ns ns Hz
Table 5a
Note 1: EM6124 (n), FR = n times the desired LCD refresh rate where n is the EM6124 mux mode number; laser trimming on request See Fig. 17.01 and 17.02 for more details concerning the frame frequency VDD1 = VDD2 = 3 to 5V, VHV = 2.5 to 5V and TA = -40 to +85C Parameter Symbol Test Conditions Clock high pulse width tCH Clock low pulse width tCL Clock period tper Reset1 pulse width Reset2 pulse width Clock and FR rise time Clock and RF fall time Data input setup time Data input hold time FR (internal frame frequency) t RES1 t RES2 tCR tCF tDS tDH fFR (note 1)
Min. 50 55 350 10 80
Typ.
Max.
Units ns ns ns s ns
200 200 20 140 75
ns ns ns ns Hz
Table 5b
Note 1: EM6124 (n), FR = n times the desired LCD refresh rate where n is the EM6124 mux mode number; laser trimming on request Timing Waveforms
Fig. 3
Copyright (c) 2004, EM Microelectronic-Marin SA
3
www.emmicroelectronic.com
R
EM6124
1 Bit Interface Description This 1 bit interface is very simple to use. There are three modes to load data into the EM6124. Command byte only mode To validate this mode, 8 bits must be shifted with bit 3 to bit 7 set to 1L. This mode is used for blank, set or sleep mode functions. Command byte and initialization mode To validate this mode, 32 bits must be shifted with bit 0 and bit 1 set to 1L. Bit 2 (sleep) can be active or inactive. Bit 3 to bit 7 (RAM address) can be in any state but it is important that they are not all simultaneously set to 1L, otherwise the chip will be in command byte only mode. Command byte and display information mode To validate this mode, 128 bits must be shifted, eight first bits are for command byte, all the other are RAM data depending of col bit mode and multiplex ratio. There are also x bits don't care in each loading depending on the programming of the chip (see Fig. 4 for more details). In each RAM's data loading, the command byte has to be introduced for the RAM address. Before loading any data into the RAM the chip has to be initialized. Command Byte
0 Blank 1 Set Command Bits 0 to 7 2 3 4 5 6 Sleep RAM address 7 Init.bit 8-9: Mux mode bits. The multiplex ratio is selected by these two bits. Table 8 shows the corresponding values. Init.bit 10-11: VLCD temperature coefficient is selected by these two bits. Table 11 shows the corresponding values. Init.bit 12: Checker bit gives the possibility to force all outputs segments in checked form (see Fig. 10 and Fig. 18.14). Init.bit 13: Inverse Checker bit gives the possibility to force all outputs segments in inverse checked form (see Fig. 10 and Fig. 18.15). Init.bit 14: Col bit configures the EM6124 on row and column driver or column driver only. In this mode the frame frequency must be external. Init.bit 15: Row inversion, possibility to inverse the order of the row outputs (see Table 10 and Fig. 18.12). Init.bit 16: M/LSB, possibility to inverse the order loading for RAM data (see Fig. 4). Init.bit 17: Video bit, possibility to inverse the content of the RAM. All the 0L pass to 1L and all the 1L pass to 0L (see Fig. 18.11). Init.bit 18-23: VLCD 64 steps programmation bits. See Fig. 8. Bit 18 (step 1) for MSB and bit 23 (step 6) for LSB. Init.bit 24: Icon bit adds one line more to the selected mux mode ratio for icon segments outputs. Init.bit 25: Sleep 2. Set all outputs at VSS. Init.bit 26-30: Must be setted to 0L. Init.bit 31: Fr_ext give the possibility to supply frame to EM6124 externally. If Fr_ext=1L then FR is input pin and user must supply signal frame. If Fr_ext=0L then FR is output pin, the signal frame is internally generated. (Init.bit 14: has the priority)
Table 6 Cmdbit 0: Blank bit forces all column outputs off. Cmdbit 1: Set bit forces all column output on. Note: If bit 0 and bit 1 are both to 1L, the chip will be in initialization mode. See remarks below. Cmdbit 2: Sleep mode bit, stops the voltage booster and the internal oscillator, active bit col forces all outputs to VSS. Cmdbits 3-7: RAM address bits. See table 6. If Cmdbits 3-7 are set to 1L, EM6124 is in Cmd byte only mode.
Reset 1 Power-up: Must be followed by a RESET cycle. After the reset 1 pulse the LCD controller driver is set to the following status:
- All outputs at VSS - Blank & Set (cmdbits 0,1) = 0L - Sleep mode (cmdbit 2) = 0L - RAM address (cmdbits 3 to 7) = 0L - Multiplex ratio (init.bits 8, 9) = 0L - Temperature coefficient (init.bits 10,11) = 0L - Checker & Inv.Checker (init.bits 12, 13) = 0L - Col Mode (init.bit 14) = 1L - Inv. Row (init.bit 15) = 0L - M/LSB (init.bit 16) = 1L - Video (init.bit 17) = 1L - VLCD step (init.bits 18 to 23) = 0L - Icon (init.bit 24) = 0L - Sleep 2 (init.bit 25) = 1L - The content of the RAM remains unchanged - Frame internally generated (init.bit 31) = 0L
Initialization Bits
8 9 Mux Mode Initialization Bits 8 to 15 10 11 12 13 14 15 Temp. Coeff. Checker Inv. Col Inv.Row Checker Initialization Bits 16 to 23 18 19 20 21 22 23 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Initialization Bits 24 to 31 26 27 28 29 30 31 Test 6 Test 5 Test 4 Test 3 Test 2 Fr_ext Table 7
16 M/LSB 24 Icon
17 Video 25 Sleep 2
An initialization should take place after reset (32 bits sent). Pin Assignment Name S1..S121 FR DI DO CLK Function LCD outputs, see Fig.4 AC I/O signal for LCD driver output Serial data input Serial data output Data clock input
8 0 0 1 1
Mux ratio (Init. bit 8, 9) 9 mux mode 0 8 1 16 0 20 1 24 Table 8
RES1 RES2 VLCD VDD1 VDD2 VHV VSS
General reset Reset the serial interface counter Internal generated voltage output Power supply for logic Power supply for analogic Power supply for high voltage Supply GND
Table 9
Copyright (c) 2004, EM Microelectronic-Marin SA
4
www.emmicroelectronic.com
R
EM6124
Data Transfer Cycle
Fig. 4
Copyright (c) 2004, EM Microelectronic-Marin SA
5
www.emmicroelectronic.com
R
EM6124
Output Row Assignments
Mux 8 + Icon Inv. Row 0 S1 S2 S3 S4 S13 S14 S15 S16 S17 1 S17 S16 S15 S14 S13 S4 S3 S2 S1 Mux Mode Mux 16 Mux 20 + Icon Inv. Row Inv. Row 0 S1 S2 S3 S4 S5 S6 S7 S8 S13 S14 S15 S16 S17 S18 S19 S20 S21 1 S21 S20 S19 S18 S17 S16 S15 S14 S13 S8 S7 S6 S5 S4 S3 S2 S1 0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 1 S22 S21 S20 S19 S18 S17 S16 S15 S14 S13 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 Mux 20 + Icon Inv. Row 0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 1 S23 S22 S21 S20 S19 S18 S17 S16 S15 S14 S13 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 Mux 24 + Icon Inv. Row 0 1 S1 S25 S24 S2 S23 S3 S22 S4 S21 S5 S20 S6 S19 S7 S18 S8 S17 S9 S16 S10 S15 S11 S14 S12 S13 S13 S12 S14 S11 S15 S10 S16 S9 S17 S8 S18 S7 S19 S6 S20 S5 S21 S4 S22 S3 S23 S2 S24 S1 S25 Table 10 Row RAM Address Bit 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 Bit 4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 Bit 5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 Bit 6 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 Bit 7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 S1 S2 S3 S4 S13 S14 S15 S16 Mu 8 Inv. Row 1 S16 S15 S14 S13 S4 S3 S2 S1 Mux 16 Inv. Row 0 S1 S2 S3 S4 S5 S6 S7 S8 S13 S14 S15 S16 S17 S18 S19 S20 1 S20 S19 S18 S17 S16 S15 S14 S13 S8 S7 S6 S5 S4 S3 S2 S1 Mux 24 Inv. Row 0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 1 S24 S23 S22 S21 S20 S19 S18 S17 S16 S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Command Byte Only Mode
time
In this mode only 8 bits have to be shifted into the EM6124 with address bits to logic 1.
Fig. 5
Command Byte and Initialization Mode
Temp. Coef
Mux mode
Fr_ext
Fig. 6
Command Byte and Display Information Mode
Fig. 7
Copyright (c) 2004, EM Microelectronic-Marin SA
6
www.emmicroelectronic.com
R
EM6124
Typical VLCD Programming Checker and Checker Inverse A fast check display can be easily created setting initialization bits 12 and 13 (called "Checker" and "Inv. Checker"). The display is completely checked with only 2 initialization sequences, one "Checker" and one "Inv. Checker". For Checker, the pattern fills the display with alternately ON and OFF pixels as shown in Fig. 10. For Inv. Checker, everything is inverted (see Fig.18.14 and 18.15). Pattern of Checker Mode
Fig. 10
Internally Generated VLCD versus Temperature
Fig. 8
Temperature Control Due to the temperature dependency of liquid cristals viscosity the LCD controlling voltage VLCD must be increased for lower temperatures to maintain optimal contrast. The EM6124 is available with 4 different temperature coefficients (see Fig. 9). The coefficient is selected by 2 bits in the initialization code TC bits 10 and 11. Table 11 shows the typical values of the different temperature coefficients. They are proportional to the programmed VLCD. Typical Values of the Temperature Coefficients Bit 10, Bit 11 Value Unit 00 mV/C -0.2 x VLCD 01 -0.52 x VLCD mV/C -1.16 x VLCD 10 mV/C -1.82 x VLCD 11 mV/C
Table 11
Fig. 11
Temperature Coefficients
Fig. 9
Copyright (c) 2004, EM Microelectronic-Marin SA
7
www.emmicroelectronic.com
R
EM6124
Display Functions Bit State
Logic 0 8 - 9: Mux Mode 10 -11:Temp.Coeff. 12: Checker 13: Inv. Checker 14: Col 15: Inv. Row See table 8 See table 11 Inactive Inactive Column driver only Increment rows (example for mux 24: row 1, 2, 3, ... , 24, 1, 2, ...) Loading in LSB mode Inverse content of RAM Inactive Inactive
Frame internally generated
Logic 1
Chess display Inverse chess display Row and column driver Decrement rows (example for mux 24: row 24, 23, 22, ... ,2 ,1, 24, 23, ...) Loading in MSB mode Inactive See Fig. 8 Add one line more to selected mux mode All outputs at VSS Must be at 0L External frame to be supplied
Table 12
16: M/ LSB 17: Video 18 - 23: VLCD step 24: Icon 25: Sleep 26 - 30: 31: Fr_ext
Copyright (c) 2004, EM Microelectronic-Marin SA
8
www.emmicroelectronic.com
R
EM6124
Block Diagram
Fig. 12
Copyright (c) 2004, EM Microelectronic-Marin SA
9
www.emmicroelectronic.com
R
EM6124
LCD Voltage Bias Levels LCD Drive Type LCD Bias Configuration VOP VOFF (rms) VON (rms) VOFF (rms)
EM6124 (24) n=24 1:24 MUX
6 Levels
n n +1
() 2( n - 1)
2
= 4.68
n +1 n -1
= 1.230
EM6124 (20) n=20 1:20 MUX
6 Levels
n n +1
() 2( n - 1) () 2( n - 1)
2
= 4.39
n +1 n -1
= 1.255
EM6124 (16) n=16 1:16 MUX
1/5 Bias 6 Levels
n n +1
2
= 4.08
n +1 n -1
= 1.291
EM6124 (8) n=8 1:8 MUX
4
1/4 Bias 6 Levels
1+
3 n
= 3.4
n - 15 = 1.446 n+3
Table 13
Optimum LCD Bias Voltages Multiplex Rate 1:24 1:20 1:16 1:8 VLCD V1 V2 V3 V4 VSS
1 1 1 1
0.930 0.660 0.340 0.817 0.634 0.366 0.800 0.600 0.400 0.750 0.500 0.250 VLCD > V1 > V2 > V3 > V4 > VSS
0.170 0.183 0.200 -
0 0 0 0'
The values in the above table are given in reference to VLCD eg. 0.5 means 0.5 x VLCD Table 14
Copyright (c) 2004, EM Microelectronic-Marin SA
10
www.emmicroelectronic.com
R
EM6124
Row and Column Multiplexing Waveform EM6124 (8)
VCP = VLCD - VSS, VSTATE = VCOL - VROW
Frame n V LCD V1 Row 1 V2=V3 V4 V SS V LCD V1 Row 2 V2=V3 V4 V SS V LCD V1 Col 1 V2=V3 V4 V SS V LCD V1 Col 2 V2=V3 V4 V SS V OP 0.75 VOP 0.5 V OP 0.25 V OP State 1 0 -0.25 VOP -0.5 VOP -0.75 V OP -V OP V OP 0.75 VOP 0.5 V OP 0.25 V OP State 2 0 -0.25 VOP -0.5 VOP -0.75 V OP -V OP 1 2 3 4 5 6 7 8 1 2 3 Frame n+1 4 5 6 7 8 State 1 State 2
Fig. 13
Copyright (c) 2004, EM Microelectronic-Marin SA
11
www.emmicroelectronic.com
R
EM6124
Row and Column Multiplexing Waveform EM6124 (16)
VCP = VLCD - VSS, VSTATE = VCOL - VROW
Frame n VLCD V1 Row 1 V2 V3 V4 VSS VLCD V1 Row 2 V2 V3 V4 VSS VLCD V1 Col 1 V2 V3 V4 VSS VLCD V1 Col 2 V2 V3 V4 VSS VOP 0.8 VOP 0.6 VOP 0.4 VOP 0.2 VOP State 1 0 -0.2 VOP -0.4 VOP -0.6 VOP -0.8 VOP -VOP VOP 0.8 VOP 0.6 VOP 0.4 VOP 0.2 VOP State 2 0 -0.2 VOP -0.4 VOP -0.6 VOP -0.8 VOP -VOP 1 2 3 4 ... 14 15 16 1 2 3 Frame n+1 4 ... 14 15 16 State 1 (ON) State 2 (OFF)
Fig. 14
Copyright (c) 2004, EM Microelectronic-Marin SA
12
www.emmicroelectronic.com
R
EM6124
Row and Column Multiplexing Waveform EM6124 (20)
VCP = VLCD - VSS, VSTATE = VCOL - VROW
Frame n VLCD V1 Row 1 V2 V3 V4 VSS VLCD V1 Row 2 V2 V3 V4 VSS VLCD V1 Col 1 V2 V3 V4 VSS VLCD V1 Col 2 V2 V3 V4 VSS VOP 0.635 VOP 0.183 VOP State 1 0 -0.183 VOP -0.635 VOP -VOP VOP 0.635 VOP 0.183 VOP State 2 0 -0.183 VOP -0.635 VOP -VOP 1 2 3 4 5 ... 17 18 19 20 1 2 3 4 Frame n+1 5 ... 17 18 19 20 State 1 (OFF) State 2 (ON)
Fig. 15
Copyright (c) 2004, EM Microelectronic-Marin SA
13
www.emmicroelectronic.com
R
EM6124
Row and Column Multiplexing Waveform EM6124 (24)
VCP = VLCD - VSS, VSTATE = VCOL - VROW
Frame n V LCD V1 Row 1 V2 V3 V4 V SS V LCD V1 Row 2 V2 V3 V4 V SS V LCD V1 Col 1 V2 V3 V4 V SS V LCD V1 Col 2 V2 V3 V4 V SS V OP 0.661 VOP 0.170 VOP State 1 0 -0.170 V OP -0.661 VOP -V OP V OP 0.661 VOP 0.170 VOP State 2 0 -0.170 V OP -0.661 VOP -V OP 1 2 3 4 5 6 ... 20 21 22 23 24 1 2 3 4 5 Frame n+1 6 ... 20 21 22 23 24 State 1 (OFF) State 2 (ON)
Fig. 16
Copyright (c) 2004, EM Microelectronic-Marin SA
14
www.emmicroelectronic.com
R
EM6124
Functional Description Supply Voltage VDD1, VDD2, VHV, VLCD, VSS The voltage between VDD1 and VSS is the supply voltage for the logic and the interface. The voltage between VDD2 and VSS is the supply voltage for the analogic. VDD1 and VDD2 must be the same voltage and, in order to guarantee the best functioning, VDD1 and VDD2 have to be separately connected to the PCB (see Fig. 19). The voltage VLCD is internally generated for the supply voltage of the LCD and is used for the generation of the internal LCD bias level. An external capacitor of 1 F must be connected between VLCD and VSS. Table 15 shows the relationship between V1, V2, V3, V4 for a programmed multiplex rate. Note that VLCD > V1 > V2 > V3 > VSS for the EM6124 8 mux programmed, and for the EM6124 16, 20, 24 mux programmed VLCD > V1 > V2 > V3 > V4 > VSS. The voltage between VHV and VSS is the supply voltage for high voltage part of the EM6124. An external VLCD may also be used by connecting a power supply and programming a lower VLCD voltage during initialization. Data Input The data input pin, DI, is used to load serial data into the EM6124. The normal serial data word length is 128 bits. 32 and 8 bits are also available in a special mode (see 1 Bit Interface Description). The command byte is loaded first and then the segment data bits (see Fig. 4).
RES1 Input
On power up the data in the shift registers, the display RAM, the sequencer driving the 8/16/20/24 rows and the 121 bit display latches are undefined.
CLK Input The clock input is used to clock the DI serial data into the EM6124. FR Input / Output The frame frequency is realized by an internal oscillator with a typical value of 75 Hz. The internal row frequency changes with the number of rows (Frow = 75 x n, where n = 8, 16, 20, 24). When bit 14 ( Col ) is inactive (active low), the frame frequency is given by the internal oscillator. This frequency can be measured on the I/O FR. When bit 14 ( Col ) is active (active low) or bit 31 (Fr_ext) is active (active high), the frame frequency is external then the frequency is given directly by the FR input to the row and column driver (see Fig. 16 and 17 for more details concerning the frame frequency).
Col 0 0 1 1
Fr_ext 0 1 0 1
Pad Frame input - ext frame input - ext frame output - int frame input - ext frame
Reset is accomplished by applying an external RES1 pulse (active low). When reset occurs within the specified time, all internal register are reset however the content of the RAM is still unchanged. The state after reset is described on page 4. RES2 Input Reset is accomplished by applying an external RES2 pulse (active low). When reset occurs within the specified time, the internal counter for serial interface is reset. The counter of the serial interface for data inputs is ready for a new loading of data. This reset 2 does not change the content of the RAM neither the content of the command and the initialization bits. To avoid trouble in case of software interrupt of the MPU during data loading, this function can be used.
Typical Frame Frequency at VDD = 3V
Driver Outputs S1 to S116 There are 121 LCD driver outputs on the EM6124. The output assignments depend on the chosen mux mode ratio (init. bits 8, 9) and the Col function (init. bit 14). When init. bit 14 ( Col ) is active, all 116 outputs function as column drivers. Table "Output Row Assignments" and Fig. 4 describe exactly the correspondent data to the output of the chip. There is one to one relationship between the display RAM and the LCD driver outputs. Each pixel (segment) driven by the EM6124 on the LCD has a display RAM bit which corresponds to it. Setting the bit turns the pixel "on" and Clearing it turns "off".
For chip-on-glass better performances can be obtained by covering the backside of the chip.
Typical Frame Frequency at TA = 25C
Fig. 17.02 Fig. 17.01
Power-Up
Copyright (c) 2004, EM Microelectronic-Marin SA 15 www.emmicroelectronic.com
R
EM6124
Functional Description for Versions
EM6124 is available in two different versions "V1" and "V2":
* EM6124V1 * EM6124V2
The difference is the effect of 32 bits initialization procedure. Basically the sequencer block (see block diagram page 9) is used for refresh the rows of the display RAM block, depending of the version ("V1" or "V2") the sequencer block could be reset or not by the 32 bits initialization procedure.
Functional description EM6124V1
The block sequencer is reset when 32 bits initialization is sent to EM6124V1. Internal signal named "RES32" reset the sequencer, the row1 will be selected during next frame period.
FR
Sequencer
Display RAM
RES32 signal *reset sequencer in "V1" version
CLK DI
Interface CMD REGISTERS INI REGISTERS
Internal "RES32" signal is used to synchronise the sequencer in cascaded applications.
Functional description EM6124V2
Disable "RES32" in the sequencer block
FR
Sequencer
Display RAM
RES32 signal *reset disable in "V2" version
CLK DI
Interface CMD REGISTERS INI REGISTERS
Internal "RES32" signal is disabled, this version is not recommended for cascaded applications.
Copyright (c) 2004, EM Microelectronic-Marin SA
16
www.emmicroelectronic.com
R
EM6124
Application Example These tables/figures show how to use the EM6124 with a given initialization. Rows "Data" show the logical value to affect pad DI for each falling edge of pad CLK. A reset cycle pad RES1 at OL is required before sending data.
Command byte
Bit No Data 0 1 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 10 0 11 1 12 0 13 0 14 1 15 0
Initialization bits or display data
16 0 17 1 18 1 19 1 20 0 21 0 22 0 23 0 24 1 25 0 26 0 27 0 28 0 29 0 30 0 31 0
Description
Bits 0,1 = 1,1: initialization is programmed Bit 2 = 0: no sleep mode Bits 3 to 7: don't care in this case (not 11111)
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.01 Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: Bits 8 to 103 = 0,0,...,0: first row of the RAM is loaded with 0,0,...,0 Bits 104 to 127 = don't care no set, no blank, no sleep Bits 3 to 7 = 0,0,0,0,0: data sent to row 1 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.02 Table 15 (continued on next pages)
Copyright (c) 2004, EM Microelectronic-Marin SA
17
www.emmicroelectronic.com
Write Row 1
First Initialization
Bits 8,9,24 = 1,1,1: mux mode 24 + icon; 25 rows driven Bits 10,11 = 0,1: temperature coefficient = -(0.52*VLCD) mV/C Bits 12,13 = 0,0: no checker or inv. checker functions Bit 14 = 1: row and column driver configuration Bit 15 = 0: row 1 of the RAM displayed on S1, row 2 on S2, ... and row 25 on S25 Bit 16 = 0: first data sent displayed on S26, last one on S121 Bit 17 = 1: 1L in the RAM corresponds to a pixel "ON" Bit 18 to 23 = 1,1,0,0,0,0 : programmed VLCD = 3.15 + (1 * 32 + 1 * 16 + 0 * 8+0 * 4 + 0 * 2 + 0 * 1) * 0.0625 = 6.150V Bit 25 = 0: no sleep Bit 26 to 31 = 0,0,0,0,0,0,0: every test bit must be set to 0
R
EM6124
Application Example continued
Command byte Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 1 8 0 9 1 10 1 11 1 12 1 13 0 14 0
Initialization bits or display data
15 1 16 0 17 0 18 0 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 2nd row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,0,0,1: data sent to row 2 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.03 Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 0 6 1 7 0 8 0 9 1 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 0 18 1 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 3rd row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,0,1,0: data sent to row 3 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.04 Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 0 6 1 7 1 8 0 9 1 10 0 11 0 12 0 13 0 14 0 15 1 16 0 17 1 18 0 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 4th row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,0,1,1: data sent to row 4 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.05 Copyright (c) 2004, EM Microelectronic-Marin SA 18 www.emmicroelectronic.com
Write Row 4
Write Row 3
Write Row 2
R
EM6124
Command byte Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 1 6 0 7 0 8 0 9 1 10 1 11 1 12 1 13 0 14 0
Initialization bits or display data
15 1 16 0 17 0 18 0 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 5th row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,1,0,0: data sent to row 5 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.06 Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 1 6 0 7 1 8 0 9 1 10 0 11 0 12 0 13 0 14 0 15 1 16 0 17 0 18 0 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 6th row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,1,0,1: data sent to row 6 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.07 Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 1 6 1 7 0 8 0 9 1 10 0 11 0 12 0 13 0 14 0 15 1 16 0 17 0 18 0 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 7th row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,1,1,0: data sent to row 7 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.08
Copyright (c) 2004, EM Microelectronic-Marin SA
19
www.emmicroelectronic.com
Write Row 7
Write Row 6
Write Row 5
R
EM6124
Command byte Bit No Data Description
0 0 1 0 2 0 3 0 4 0 5 1 6 1 7 1 8 0 9 1 10 1 11 1 12 1 13 0 14 0
Initialization bits or display data
15 1 16 0 17 0 18 0 19 1 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 8th row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,0,1,1,1: data sent to row 8 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.09 Bit No Data Description
0 0 1 0 2 0 3 0 4 1 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 --125 126 127 0 0 0
Bits 0,1,2 = 0,0,0: 9th row of the RAM is loaded no set, no blank, no sleep Bits 3 to 7 = 0,1,0,0,0: data sent to row 9 of the RAM S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
Result
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.10
Bit No Data 0 1 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 10 0 11 1 12 0 13 0 14 1 15 0 16 0 17 0 18 1 19 1 20 0 21 0 22 0 23 0 24 1 25 0 26 0 27 0 28 0 29 0 30 0 31 0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.11
Copyright (c) 2004, EM Microelectronic-Marin SA
20
www.emmicroelectronic.com
Initialization in Video Inverse Mode
Bits 0,1 = 1,1: no set, no blank, no sleep Bit 2 = 0 Bits 3 to 7 = don't care in this case (not 1,1,1,1,1)
Result
Description
Bit 17 = 0: 1L in the RAM corresponds to a pixel "OFF"
Write Row 9
Write Row 8
R
EM6124
Command byte
Bit No Data 0 1 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 10 0 11 1 12 0 13 0 14 1 15 1
Initialization bits or display data
16 0 17 1 18 1 19 1 20 0 21 0 22 0 23 0 24 1 25 0 26 0 27 0 28 0 29 0 30 0 31 0
S1 S2 S3 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.12
Bit No Data 0 1 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 10 0 11 1 12 0 13 0 14 1 15 1 16 0 17 1 18 1 19 0 20 1 21 0 22 0 23 0 24 1 25 0 26 0 27 0 28 0 29 0 30 0 31 0
S1 S2 S3 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.13
Bit No Data 0 1 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 10 0 11 1 12 1 13 0 14 1 15 0 16 0 17 1 18 1 19 1 20 0 21 0 22 0 23 0 24 1 25 0 26 0 27 0 28 0 29 0 30 0 31 0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.14 Copyright (c) 2004, EM Microelectronic-Marin SA 21 www.emmicroelectronic.com
Initialization in Checker Mode
Bits 0,1 = 1,1: initialization is programmed Bit 2 = 0 Bits 3 to 7 = don't care in this case (not 1,1,1,1,1)
Result
Description
Bit 12 = 1 : checker pattern on the LCD, don't care for the RAM Bit 17 = 1 : 1L in the RAM corresponds to a pixel "ON"
Initialization to change VLCD (Contrast)
Bits 0,1 = 1,1: initialization is programmed Bit 2 = 0: no sleep mode Bits 3 to 7 = don't care in this case (not 1,1,1,1,1)
Bit 15 = 1: row 1 (address '00000') displayed on S25, row 2 (address '00001') displayed S24, ..., and row 25 (address '11000') displayed on S1 Bit 17 = 1: 1L in the RAM corresponds to a pixel "ON" Bits 18 to 23 = 1,0,1,0,0,0 : programmed VLCD = 3.15 + (1 * 32 + 0 * 16 + 1 * 8 + 0 * 4 + 0 * 2 + 0 * 1) * 0.0625 = 5.650V
Result
Description
Initialization in Inverse Row Mode
Bits 0,1 = 1,1: no set, no blank, no sleep Bit 2 = 0: no sleep mode Bits 3 to 7 = don't care in this case (not 1,1,1,1,1)
Result
Description
Bit 17 = 1: 1L in the RAM corresponds to a pixel "ON" Bit 15 = 1: row 1 (address "00000") displayed on S25 row 2 (address "00001") displayed S24 ....,row 25 (address "11000") displayed on S1
R
EM6124
Command byte
Bit No Data 0 1 1 1 2 0 3 0 4 0 5 0 6 0 7 0 8 1 9 1 10 0 11 1 12 0 13 1 14 1 15 0
Initialization bits or display data
16 0 17 1 18 1 19 1 20 0 21 0 22 0 23 0 24 1 25 0 26 0 27 0 28 0 29 0 30 0 31 0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.15
Bit No Data 0 0 1 1 2 0 3 1 4 1 5 1 6 1 7 1
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.16
Bit No Data 0 1 1 0 2 0 3 1 4 1 5 1 6 1 7 1
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S23 S24 S25
= undefined = pixel "OFF" = pixel "ON"
S118 S119 S120 S121
S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45
Fig. 18.17 Copyright (c) 2004, EM Microelectronic-Marin SA 22 www.emmicroelectronic.com
Command Byte only: Blank
Bits 0,1 = 1,0: blank is programmed Bit 2 = 0 Bits 3 to 7 = 1,1,1,1,1: command byte only mode
Result
Description
Command Byte only: Set
Bits 0,1 = 0,1: blank is programmed Bit 2 = 0 Bits 3 to 7 = 1,1,1,1,1: command byte only mode
Result
Description
Initialization in Inverse Checker Mode
Bits 0,1 = 1,1: initialization is programmed Bit 2 = 0 Bits 3 to 7 = don't care in this case (not 1,1,1,1,1)
Result
Description
Bit 13 = 1 : checker pattern on the LCD, don't care for the RAM Bit 17 = 1 : 1L in the RAM corresponds to a pixel "ON"
R
EM6124
Applications Two EM6124 work in parallel to drive up to 50 rows x 96 columns or 25 rows x 212 columns as below
By connecting the VLCD bias outputs as shown, the pixel load is averaged across all the drivers. The effective bias level source impedance is the parallel combination of the total number of drivers. * VDD1 and VDD2 have been connected together.
Fig. 19
Contacting Power Supply
In order to guarantee the best functioning VDD1 and VDD2 have to be connected separately on the PCB, if possible
Fig. 20
Copyright (c) 2004, EM Microelectronic-Marin SA
23
www.emmicroelectronic.com
R
EM6124
Applications Recommended flow to use EM6124 with external VLCD power supply. Power Supplies: -VHV pad should be connected to GND.
- Power should be applied first on VDD1,2 then on VLCD (external).
Voltage (V) Ext VLCD
--VDD1,2
___
time
VLCD
EXT Power Supply
EM6124
Initialization sequence method:
The software should be adapted to avoid high current consumption. If external Vlcd is lower than the internally generated Vlcd then EM6124 will understand that the level set by the user is not achieved and it will increase the current to achieve the requested level. For this raison Vlcd step (bit18 to 23) should be set to "000000b" which means 3V then the minimum voltage.
Copyright (c) 2004, EM Microelectronic-Marin SA
24
www.emmicroelectronic.com
R
EM6124
Dimensions of Chip Form and Bumped Die
All dimensions in micron Thickness: 15 mils Bump size: LCD output pads = 50 x 100 micron, input/output pads = 102 x 102 micron Bump height: 17.5 micron Bump hardness: 50 Vickers Chip size: [X x Y] 7930 x 1493 micron or 312 x 59 mils Note: The origin (0,0) is the lower left coordinate of center pads. The lower left corner of the chip shows distances to origin. Fig. 21
Ordering Information
When ordering, please specify the complete Part Number
Part Number EM6124V1WP15E EM6124V2WP15E Recommended for cascaded applications (see p.16) Yes No Die Form Bumping
Die in waffle pack, 15 mils thickness Die in waffle pack, 15 mils thickness
With gold bumps With gold bumps
For other delivery form in die (with or without bumps), please contact EM Microelectronic-Marin S.A. Minimum order quantity might apply.
EM Microelectronic-Marin SA cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the circuitry and specifications without notice at any time. You are strongly urged to ensure that the information given has not been superseded by a more up-to-date version. (c) EM Microelectronic-Marin SA, 08/04, Rev. G
Copyright (c) 2004, EM Microelectronic-Marin SA
25
www.emmicroelectronic.com


▲Up To Search▲   

 
Price & Availability of EM6124

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X